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Abstract
We derive an algorithm for calculating Lie point symmetries of systems of
stochastic ordinary differential equations (SODEs) of any order. From this
algorithm, the following facts emerge. Symmetries of a SODE do not in general
form a Lie algebra. The determining equations for Ito’s equation are in general
stochastic linear partial differential equations whereas for SODEs of ordern � 2
the determining equations are linear deterministic partial differential equations
that form an overdetemined system which is solvable by classical methods.

For scalar second-order SODEs, we provide a complete classification
of equations admitting finite-dimensional symmetry Lie algebras. This
classification is applied to the integration of scalar second-order SODEs:
in general a SODE admitting a two-dimensional symmetry algebra is not
integrable by quadratures, although it is reducible to a homogeneous Ito
equation. In particular, a scalar second-order SODE admitting a two-
dimensional symmetry algebra with connected operators is linearizable. We
also characterize integrable scalar second-order SODEs admitting three-
dimensional symmetry algebras. Finally we show that a SODE can admit
maximally a zero-, one-, two-, three- or four-dimensional Lie algebra.

PACS numbers: 1130, 0220, 0250

AMS classification scheme numbers: 60H10, 54H15

1. Introduction

Lie’s theory of differential equations (DEs) is one of the most systematic ways for constructing
exact solutions of deterministic DEs. It exploits the invariance of the DE under (infinitesimal)
transformations (symmetries) that allow integration strategies. Indeed, a majority of
deterministic DEs integrable by ad hoc means are left unchanged by certain transformations,
and tricks for solving them rely mainly on the properties of these special transformations.
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In contrast to deterministic DEs, attempts to obtain a symmetry algorithm for stochastic
ordinary differential equations (SODEs) similar to Lie’s are recent. To the best of our
knowledge, seminal contributions in this direction were made by Gaeta and Quintero in their
pioneering paper [1] (see also references therein). These authors proposed an algorithm for
calculating projectable symmetries of Ito’s equation which is the model first-order SODE par
excellence. They then connected the projective symmetries of Ito’s equation to the symmetries
of the associated Fokker–Planck equation. From their paper, some fundamental questions
remain unanswered: are projectible symmetries the sole type of point symmetry for Ito’s
equation? Does the set of symmetries of Ito’s equation form a Lie algebra? How can
symmetries be used in integration? In this paper, beside addressing these and other questions,
we obtain an algorithm for calculating the point symmetries of the more general system of
SODEs1

x(n) = f (t, x, ẋ, . . . , x(n−1)) +G(t, x, ẋ, . . . , x(n−1))
dB(t)

dt
(1)

where x = [x1, . . . , xN ]T, f = [f1, . . . , fN ]T, G = [Gij ] is an N ×M matrix, B is an M-
dimensional Brownian motion andx(k) = dkx/dtk . Equation (1) is an obvious generalization of
Ito’s equation. It models a variety of phenomena arising in diverse fields: electrical engineering
(LCR circuit driven by thermal noise [2]), structural engineering (buckling of columns with
random initial displacement [3]), vibration theory (random vibration of strings and rods [4]),
population dynamics and disease control [5], finance (pricing of options [6]), seismology
(effect of an earthquake on earthbound structures [7]), fluid mechanics (motion of a lifting
surface in response to atmospheric turbulence in a steady flight [8]), telecommunication [9],
etc.

For the sake of completeness and clarity of exposition, we begin with a brief introduction
to stochastic processes in section 2. In fact this is a pretext to introduce Ito’s formula and
Oksendal’s formula for random time change of Brownian motions. These two formulae are
the building blocks for our symmetry algorithm. Section 3 is devoted to the derivation of a
symmetry algorithm for (1) and to the study of the structure of the symmetries of (1). Also, we
discuss the symmetries of some models that arise in applications. Section 4 focuses on (1) in
the case n = 2. Namely, we provide a symmetry classification of scalar second-order SODEs
possessing one-, two- or three-dimensional symmetry algebras. Section 5 deals with maximal
symmetries for scalar second-order SODEs. The last section, section 6, summarizes the results
obtained in the previous sections.

Throughout this paper, we assume that the reader is familiar with Lie’s algorithm
for calculating symmetries of deterministic DEs [10–13] and basic notions of probability
theory [14].

2. Stochastic process: Ito’s formula, Oksendal’s formula

In this section, we assume that the basic concepts of probability theory such as probability space,
random variable, characteristic function, expectation, variance and covariance are known.

Let (�,A, P ) be a probability space and I an interval.
A stochastic process is an application X : I ×� −→ RN such that for all t ∈ I , X(t, .)

is a random variable. For each t ∈ I , the random variable X(t, .) is denoted by X(t).
Let I = [0,+∞). A scalar (standard) Brownian motion or Wiener–Lévy process is a

stochastic process B(t) satisfying the following properties:
1 The Fokker–Planck (FP) equation for (1) is obtained by rewriting (1) as a system of Nn Ito equations dy =
d(t, y) dt + S(t, y) dB whose FP equation is Pt + (diP ),i − 1

2 ((SS
T)ij ),ij = 0, P(t, y) being the probability density

function.
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(i) P(B(0) = 0) = 1;
(ii) for any finite sequence {ti} ⊂ I with ti < ti+1, the random variables B(ti+1) − B(ti) are

independent;
(iii) for all t, s ∈ I , the probability distribution of B(t) − B(s) is Gaussian with E(B(t) −

B(s)) = 0 and E([B(t)− B(s)]2) = 2D2|t − s|, where D is a nonzero constant.

AnN -dimensional Brownian motion is a stochastic process B(t) = [B1(t), . . . , BN(t)]T,
where the Bis are independent scalar Brownian motions.

Wiener [15] proved that the Brownian motion B(t) is nowhere differentiable in the usual
sense. The derivative, in the distribution sense, of the Brownian motion B(t) is called white
noise and is represented formally as dB

dt .
The mean square norm of a random variable R is defined by

||R|| = [E(|R|2)]1/2 =
( ∫

�

|R|2 dP

)1/2

with |R| =
√∑N

i=1 R
2
i .

Now let X(t) be a stochastic process such that ||X(t)|| < ∞ for all t ∈ [0, a],
a > 0. Consider a subdivision 0 = t1 < t2 < · · · < tn = a of [0, a] and let
!n = max1�k�n−1(tk+1 − tk). Form the random variable

Yn =
k=n−1∑
k=1

X(tk)[B(tk+1)− B(tk)]. (2)

It is straightforward to check that ||Yn|| <∞.
If there is a random variable Y such that

lim
n→+∞,!n→0

||Yn − Y || = 0

Y is called the Ito integral of X(t) and is denoted by
∫ a

0 X(t) dB (t).

Remark. Note that in (2), the values of X(t) are not taken at arbitrary points in the interval
[tk, tk+1] but at the point tk .

An Ito process is a stochastic process X(t) defined by

X(t) = X(t0) +
∫ t

t0

f (s,X(s)) ds +
∫ t

t0

G(s,X(s)) dB (s) (3)

or formally

dX (t) = f (t, X(t)) dt +G(t,X(t)) dB(t) (4)

where t0, t ∈ I , f is an N vector-valued function, G is an N ×M matrix-valued function,
B(t) is anM-dimensional Brownian motion and the second integral in (3) is Ito’s integral.

Now we have the tools to state one of the main formulae of this section.

Theorem 1 (Ito’s formula [16]). Let F : I × RN −→ RQ be an application such that
F(t, .) ∈ C2(RN,RQ) and F(., x) ∈ C1(I,RQ) for all (t, x) ∈ I × RN . If X(t) is an
Ito process, then F(t,X(t)) is also an Ito process with

dFi (t, X(t)) = Fi,t (t, X(t)) dt + Fi,j (t, X(t)) dXj + 1
2Fi,jk(t, X(t)) dXj dXk (5)

where summation over repeated indices is assumed, the indices following the comma refer
to partial differentiation and dXj dXk is evaluated using the convention dt dBl = 0,
dBl dBp = δlp dt .
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Proof. See [17, 18]. �

Remark. In stochastic calculus, Ito’s formula is the counterpart of the classical chain rule of
calculus. This justifies its huge impact in the development of the theory of stochastic DEs.

Example. It is obvious that the scalar Brownian motion B(t) is an Ito process. Using Ito’s
formula we find that

dB2 = 2B dB + 1
2 2 dB dB

= dt + 2B dB.

This implies that
∫ t

0
B(s) dB(s) = 1

2B
2(t)− 1

2 t.

From this simple example, one can readily appreciate the difference between Ito’s integral and
the Lebesgue integral.

Theorem 2 (Random time change in Brownian motion [18]). Let α(t) be a scalar stochas-
tic process satisfying:

(i) α(0) = 0, dα(t)
dt > 0,

(ii) there is a stochastic process β(t) such that α(β(t, ω), ω) = β(α(t, ω), ω) = t for all
(t, ω) ∈ I ×�.

Then, under the (random) time change t̄ = α(t), the Brownian motion B(t) is mapped to
another Brownian motion B̄(t̄) defined by

dB̄ =
√

dα(t)

dt
dB. (6)

Proof. Consult [18]. �

Remark. A particular instance of Oksendal’s formula was proved in the appendix of [1]. We
suspect that the authors were unaware of Oksendal’s result.

Example. Using (6), it is straightforward to see that Brownian motions are invariant under
time translations.

3. Symmetry algorithm for SODEs

We construct a symmetry algorithm for calculating symmetries of SODEs of any order. We
start by recalling the prolongation formulae and some of their properties.
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3.1. Prolongation formulae

Consider a one-parameter group of point transformations

t̄ = f (t, x; ε) x̄i = ψi(t, x; ε) i = 1, . . . , N (7)

where ε is a small parameter, t is the independent variable and x the dependent variable. It
is well known from Lie’s work that the group whose transformations are given by (7) can
equivalently be described by the infinitesimal transformations

t̄ = t + εξ(t, x) x̄i = xi + εηi(t, x) (8)

where

ξ = ∂f

∂ε

∣∣∣∣
ε=0

ηi = ∂ψi

∂ε

∣∣∣∣
ε=0

if we assume that the identity is given by ε = 0. The symbol or generator of the group given
by (7) is the vector field

X = ξ(t, x) ∂
∂t

+ ηi(t, x)
∂

∂xi
. (9)

We are interested in how dkxi
dtk ≡ x(k)i transforms when (7) acts on a DE. The answer is provided

by the prolongation formulae:

x
(k)
i = x(k)i + εη[k]

i (t, x, . . . , x
(k)) k � 1 (10)

where η[k]
i is defined recursively by

η
[k]
i = dη[k−1]

i

dt
− x(k)i

dξ

dt
η

[0]
i = ηi. (11)

The kth prolongation of the vector field X is given by

X[k] = X[k−1] + η[k]
i

∂

∂x
(k)
i

X[0] = X. (12)

Next we give a lemma that will be useful in the derivation of our symmetry algorithm.

Lemma 1. For p � 1,

∂η
[p]
i

∂x
(p)

j

= ηi,j − pdξ

dt
δij − ẋiξ,j (13)

∂2η
[p]
i

∂x
(p)

j ∂x
(p)

k

= −δ1p(δij ξ,k + δikξ,j ). (14)

Proof. By induction on p. �

3.2. Point symmetries of Ito’s equation

Consider an Ito equation

dxi = fi(t, x) dt +Gij (t, x) dBj (15)

invariant under the transformations (7). Using Ito’s formula we have up to order ε

dx̄i ≈ fi(t, x) dt +Gij (t, x) dBj + ε[(ηi,t + ηi,j fj + 1
2ηi,jkGjlGkl) dt + ηi,jGjkdBk]. (16)
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Since (15) is invariant under (7), we must have

dx̄i = fi(t̄ , x̄) dt̄ +Gij (t̄ , x̄) dB̄j . (17)

However, up to order ε, we have the following approximations:

fi(t̄ , x̄) ≈ fi + εXfi Gij (t̄ , x̄) ≈ Gij + εXGij (18)

dt̄ ≈ dt + ε[(ξ,t + ξ,jfj + 1
2ξ,jkGjlGkl) dt + ξ,jGjk dBk, ]. (19)

By using the formula for random time change in the Brownian motion (see section 2) and Ito’s
formula, we find that

dB̄i ≈ dBi +
ε

2

[
ξ,t + ξ,jfj +

1

2
ξ,jkGjlGkl + ξ,jGjk

dBk
dt

]
dBi. (20)

Substitute (18)–(20) into (17) and compare the result with (16) to obtain

Xfi + fi(ξ,t + ξ,jfj + 1
2ξ,jkGjlGkl) = ηi,t + ηi,j fj + 1

2ηi,jkGjlGkl

XGij +
1

2

[
ξ,t + ξ,kfk +

1

2
ξ,klGkpGlp + ξ,kGkl

dBl
dt

]
Gij + ξ,kGkjfi = ηi,kGkj

or equivalently (see the appendix for the expanded version of these equations)

X[1](ẋi − fi)|ẋ=f + 1
2GjlGkl(ηi,jk − fiξ,jk) = 0 (21)

XGij + (ξ,kfi − ηi,k)Gkj +
1

2
Gij

[
ξ,t + ξ,kfk +

1

2
ξ,klGkpGlp + ξ,kGkl

dBl
dt

]
= 0. (22)

Conversely, if (21) and (22) are satisfied, without loss of generality, we can assume that
X = ∂/∂t (use canonical variables). Thus the equations (21) and (22) will lead to fi = fi(x)
and Gij = Gij (x), i.e. the Ito equation (15) is invariant under X. So we have proved the
following statement.

Theorem 3 (Symmetries of the Ito equation). A vector field

X = ξ(t, x) ∂
∂t

+ ηi(t, x)
∂

∂xi

is a symmetry of the Ito equation (15) if and only if (21) and (22) are satisfied.

Remarks. The system (21), (22) is a system of linear stochastic partial DEs. Stochastic
because of the white noise terms dBl/dt appearing in (22). So in principle the determining
equations for the symmetries of Ito’s equation are as difficult to solve as the Ito equation itself.
Nevertheless, by making appropriate antsäze for ξ and ηi we can simplify the determining
equations.

If we assume that X is projectable, i.e. ξ = ξ(t), we recover the algorithm of Gaeta and
Quintero [1].

If G = 0, we recover the classical algorithm for symmetries of a deterministic equation.
In general, the symmetries of Ito’s equation do not form a Lie algebra. Indeed it can be

checked that the Lie bracket of two symmetries is not necessarily a symmetry. However, the
symmetries of Ito’s equation do form a vector field.
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3.3. Symmetries of (1) when n � 2

We first rewrite (1) as

dx(n−1) = f (t, x, ẋ, . . . , x(n−1)) dt +G(t, x, ẋ, . . . , x(n−1)) dB (23)

dx(k) = x(k+1) dt k = 0, 1, . . . , n− 2. (24)

Assume that (1) (or equivalently (23), (24)) is invariant under (7). This implies that

dx(n−1) = f (t̄, x̄, ẋ, . . . , x(n−1)) dt̄ +G(t̄, x̄, ẋ, . . . , x(n−1)) dB̄ (25)

dx(k) = x(k+1) dt̄ k = 0, 1, . . . , n− 2. (26)

A direct computation using the prolongation formulae and Oksendal’s formula for random
time change in the Brownian motion shows that

fi(t̄ , x̄, . . . , x(n−1)) ≈ fi + εX[n−1]fi

Gij (t̄ , x̄, . . . , x(n−1)) ≈ Gij + εX[n−1]Gij

dB̄i ≈ dBi +
ε

2

dξ

dt
dBi.

(27)

The substitution of (27) into (25) yields

dx(n−1)
i ≈ fi dt +Gij dBi + ε

[(
fi

dξ

dt
+X[n−1]fi

)
dt +

(
1

2
Gij

dξ

dt
+X[n−1]Gij

)
dBj

]
. (28)

The combined use of the prolongation formulae and Ito’s formula gives

dx(n−1)
i = dx(n−1)

i + ε

[(
η

[n−1]
i,t +

∂ηi

∂x
(n−1)
j

fj +
1

2

∂2ηi

∂x
(n−1)
j ∂x

(n−1)
k

GjlGkl

+
n−2∑
α=0

∂η
[n−1]
i

∂x
(α)
j

x
(α+1)
j

)
dt +

∂η
[n−1]
i

∂x
(n−1)
j

Gjk dBk

]
. (29)

Comparing (28) with (29), we arrive at

η
[n−1]
i,t +

∂ηi

∂x
(n−1)
j

fj +
1

2

∂2ηi

∂x
(n−1)
j ∂x

(n−1)
k

GjlGkl +
n−2∑
α=0

∂η
[n−1]
i

∂x
(α)
j

x
(α+1)
j = fi dξ

dt
+X[n−1]fi

∂η
[n−1]
i

∂x
(n−1)
j

Gjk = 1

2
Gik

dξ

dt
+X[n−1]Gik

or equivalently

X[n](x
(n)
i − fi)|x(n)=f +

1

2

∂2ηi

∂x
(n−1)
j ∂x

(n−1)
k

GjlGkl = 0

X[n−1]Gik +
1

2
Gik

dξ

dt
− ∂η

[n−1]
i

∂x
(n−1)
j

Gjk = 0.

Using lemma 1, we obtain

X[n](x
(n)
i − fi)|x(n)=f − δ1n−1GikGjkξ,j = 0 (30)

X[n−1]Gik +

(
n− 1

2

)
dξ

dt
Gjk −Gjk(ηi,j − ẋiξ,j ) = 0. (31)

In matrix notation, the system (30), (31) reads (see the appendix for the expansions of these
equations)

X[n](x(n) − f )|x(n)=f − δ1n−1GG
T grad ξ = 0 (32)

X[n−1]G +

(
n− 1

2

)
dξ

dt
G− (grad η)G + (Gẋ)T grad ξ = 0 (33)
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where grad ξ = [ξ,i]T, grad η = [ηi,j ]. Conversely, ifX satisfies (32), (33), we can without loss
of generality assume thatX = ∂/∂t (use canonical variables), whencef = f (x, ẋ, . . . , x(n−1))

andG = G(x, ẋ, . . . , x(n−1)), i.e. X is a symmetry of (1). We have thus proved the following
result.

Theorem 4. A vector field X = ξ(t, x) ∂
∂t

+ ηi(t, x) ∂∂xi is a symmetry of the SODEs (1) with
n � 2 if and only if (32) and (33) are satisfied.

Remarks. The determining equations (32), (33) for SODEs of order n � 2 form an
overdetermined system of linear deterministic partial DEs. Recall that for Ito’s equation,
the determining equations were stochastic.

The symmetries of a SODE of order n � 2 do not in general form a Lie algebra. It can be
checked that the Lie bracket of two symmetries is not necessarily a symmetry.

When G = 0, we re-obtain Lie’s classical symmetry algorithm.

Examples. Consider the response of a mass–spring linear oscillator to a white-noise random
excitation. The governing equation is [19, 20]

ẍ = −ω2x + σ
dB

dt
(34)

where ω2 = k/m = const., m is the mass, k is the characteristic coefficient of the spring and
σ = const. �= 0. The determining equations for (34) read

X[2](ẍ + ω2x)|ẍ+ω2x=0 − σ 2η,x = 0 (35)
3
2 (ξ,t + ẋξ,x)− ση,x + ẋξ,xσ = 0. (36)

The second determining equation (36) yields

ξ = a(t) η = 3
2 ȧ(t)x + b(t). (37)

Substituting (37) into (35), we obtain, after simple calculations,

a = C1t + C2 b̈ + ω2b = 0 C1ω
2 = 0 (38)

where C1 and C2 are arbitrary constants. The last equation of (38) prompts the consideration
of the following cases.

(i) If ω = 0, then ξ = C1t +C2, η = 3
2C1x +C3t +C4, where the Ci are arbitrary constants.

So the symmetries form a vector space spanned by the operators

X1 = ∂

∂t
X2 = ∂

∂x
X3 = t ∂

∂x
X4 = t ∂

∂t
+

3

2
x
∂

∂x
. (39)

Simple computations show that

[X1, X2] = 0 [X2, X3] = 0 [X1, X3] = X2

[X1, X4] = X1 [X2, X4] = 3
2X2 [X3, X4] = 1

4X3.

Thus the symmetries span a Lie algebra.
(ii) If ω �= 0, then ξ = C1, η = C2 cos(ωt) + C3 sin(ωt), where the Cis are constants. Thus

the symmetries are generated by the vectors

X1 = ∂

∂t
X2 = cos(ωt)

∂

∂x
X3 = sin(ωt)

∂

∂x
.

These vectors satisfy

[X1, X2] = −ωX3 [X1, X3] = ωX1 [X1, X2] = 0.
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Remarks. The symmetry structure of the mass–spring stochastic oscillator clearly points to
the fact that scalar linear SODEs are not equivalent to each other, i.e. they cannot be mapped to
each other by means of invertible point (derivative independent) transformations. In contrast
note that scalar deterministic linear ODEs are equivalent to the free-particle equation ẍ = 0,
i.e. they are equivalent to each other. Furthermore, when ω = 0, equation (34) admits a
four-dimensional Lie algebra. This is peculiar to SODEs. Indeed, a scalar deterministic ODE
cannot admit a four-dimensional Lie algebra [21, 23].

The motion of a hard-spring oscillator driven by a Gaussian white noise is described
by [20]

ẍ + 2αẋ + ω2(x + x3) = σ dB

dt
(40)

where α, ω �= 0 and σ �= 0 are constants. Straightforward calculations reveal that symmetries
of (40) are generated by X = ∂/∂t .

4. Classification and integration of scalar second-order SODEs admitting two- or
three-dimensional symmetry Lie algebras

We provide a classification of scalar SODEs possessing two- and three-dimensional Lie
algebras. Then we show when it is possible to integrate the canonical forms and how this
leads to theorems on integrability of scalar second-order SODEs.

4.1. Scalar second-order SODEs with two-dimensional symmetry Lie algebras

There are exactly two classes of two-dimensional Lie algebras, the Abelian two-dimensional
Lie algebra LI2 : [X1, X2] = 0 and the non-Abelian two-dimensional Lie algebra LII2 :
[X1, X2] = X1. By assuming the connectedness (X1 = ρ(t, x)X2) and the unconnectedness
(X1 �= ρ(t, x)X2) of X1 and X2, Lie obtained the nonsimilar realizations of these algebras in
terms of vector fields in (1 + 1)-space. He used these realizations to study the integrability
of scalar second-order deterministic ODEs. He found that a scalar second-order deterministic
ODE admitting a two-dimensional Lie algebra is integrable by quadratures. In order to ascertain
whether this assertion is valid for scalar SODEs, we follow Lie’s steps. The result of the
classification is given in table 1: an equation admitting a given set of symmetries is constructed
by imposing these symmetries on the general scalar second-order SODEs via the symmetry
algorithm obtained in the previous section. For a given realization of a Lie algebra, the equation
obtained is a representative equation for that realization since, if that equation is mapped to
another equation via an invertible point transformation, the resulting equation enjoys the same
symmetry propreties. This is what motivated Lie to look for nonsimilar realizations of Lie
algebras in his study of the symmetry structure of deterministic DEs.

A close analysis of table 1 reveals the following theorems.

Theorem 5. A scalar second-order SODE which admits a two-dimensional point symmetry
Lie algebra with connected generators is reducible via an invertible point transformation to a
linear scalar second-order SODE.

Proof. From table 1, we see that the only algebras with connected operators are LI2,1 and LII2,1
and the corresponding equations are clearly linear. �
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Table 1. Canonical forms of scalar second-order SODEs admitting two-dimensional symmetry
Lie algebras.

Algebra Basis operators Representative equations

LI2,1 X1 = ∂

∂x
, X2 = t ∂

∂x
ẍ = f (t) + g(t)

dB

dt

LI2,2 X1 = ∂

∂t
, X2 = ∂

∂x
ẍ = f (ẋ) + g(ẋ)

dB

dt

LII2,1 X1 = ∂

∂x
, X2 = x ∂

∂x
ẍ = f (t)ẋ + g(t)ẋ

dB

dt

LII2,2 X1 = ∂

∂x
, X2 = t ∂

∂t
+ x

∂

∂x
ẍ = t−1f (ẋ) + t−1/2g(ẋ)

dB

dt

Theorem 6. A scalar second-order SODE invariant under a two-dimensional point symmetry
Lie algebra with unconnected basis vectors is reducible to a homogeneous Ito equation
du = F(u) dt̄ +G(u) dB̄.

Proof. For the equation admitting LI2,2, make the change u = ẋ, t̄ = t and for the equation
corresponding to LII2,2 perform the transformation u = ẋ, t̄ = ln t . �

Remark. Note that a scalar second-order SODE admitting a two-dimensional Lie algebra with
unconnected operators is not in general integrable by quadratures.

4.2. Scalar second-order SODEs with three-dimensional symmetry Lie algebras

Lie [21] was the first to completely classify complex three-dimensional Lie algebras. He
exploited this classification to obtain complex realizations of three-dimensional Lie algebras
in terms of vector fields in (1 + 1)-space. The classification of real three-dimensional Lie
algebras is due to Bianchi [22]. The realizations of these algebras in terms of vector fields in
(1 + 1)-space were first given in Mahomed [23] (see also [24]). We will use these realizations
to obtain canonical forms for scalar SODEs admitting three-dimensional Lie algebras. The
results are summarized in table 2. The algebras not appearing in table 2 are those not admissible
by a scalar second-order SODE or those leading to deterministic ODEs. In table 2, a, b, α and
β �= 0 are constants.

It is straightforward to see that linear second-order SODEs admitting three-dimensional
Lie algebras are readily integrable. It remains then to study the integrability of the nonlinear
ones. We shall need the following theorem.

Theorem 7. Consider a scalar homogeneous Ito equation

dx = f (x) dt + g(x) dB. (41)

Let

I = f

g
− 1

2
g′ J = (gI ′)′

I ′ . (42)

Equation (41) is reducible to a linear SODE via a transformation u = h(x) if and only if
I ′ = 0 or J ′ = 0.

Proof. See Gard [17]. �
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Table 2. Canonical forms of scalar second-order SODEs admitting three-dimensional symmetry
Lie algebras. Let p = ∂/∂t and q = ∂/∂x.

Algebras Basis operators Representative equations

L3,2 X1 = q, X2 = p, X3 = tq ẍ = α + β
dB

dt

LI3,3 X1 = q, X2 = p, X3 = tp + (t + x)q ẍ = αe−ẋ + βe−ẋ/2 dB

dt

LII3,3 X1 = q, X2 = tq, X3 = p + xq ẍ = et + et
dB

dt

LII3,4 X1 = q, X2 = tq, X3 = tp + xq ẍ = αt−1 + βt−1/2 dB

dt

L
I,a
3,6 X1 = p, X2 = q, X3 = tp + axq ẍ = αẋ a−2

a−1 + βẋ
a−3/2
a−1

dB

dt
, a �= 0, 1

L
II,a
3,6 X1 = q, X2 = tq, X3 = (1 − a)tp + xq ẍ = αt 2a−1

1−a + βt
a−3/2
1−a dB

dt
L
I,b
3,7 X1 = p, X2 = q, X3 = (bt + x)p + (bx − t)q ẍ = (α + β2ẋ)(1 + ẋ2)3/2eb tan−1 ẋ

+β(1 + ẋ2)5/4e
1
2 b tan−1 ẋ dB

dt
L
II,b
3,7 X1 = tq, X2 = q, X3 = (1 + t2)p + (x + b)xq ẍ = α(1 + t2)−3/2eb tan−1 t

+β(1 + t2)−1eb tan−1 t dB

dt
LI3,8 X1 = q, X2 = tp + xq, X3 = 2txp + x2q ẍ = (αẋ3 − 1

2 ẋ + β2ẋ4)t−1

+βẋ5/2t−1/2 dB

dt
LII3,8 X1 = q, X2 = tp + xq, X3 = 2txp + (x2 − t2)q ẍ = [(ẋ + ẋ3) + α(1 + ẋ2)3/2

+β2ẋ(1 + ẋ2)3/2]t−1

+β(1 + ẋ2)5/4t−1/2 dB

dt
LIII3,8 X1 = q, X2 = tp + xq, X3 = 2txp + (x2 + t2)q ẍ = [(ẋ − ẋ3) + α(1 − ẋ2)3/2

+β2ẋ(1 − ẋ2)3/2]t−1

+β(1 − ẋ2)5/4t−1/2 dB

dt

Remark. In theorem 7, if I ′ = 0, take h(x) = ∫ x 1
g(s)

ds and if J ′ = 0, h(x) is a solution of
the ODE (h′g)′ + Jh′ = 0.

Theorem 8. The SODE, corresponding to the Lie algebra LI3,3 of table 2,

ẍ = αe−ẋ + βe−ẋ/2 dB

dt

is integrable by quadratures if

α = β2

4
− β4

2
.

Also, the SODE associated with the Lie algebra LI,a3,6, namely

ẍ = αẋ a−2
a−1 + βẋ

a−3/2
a−1

dB

dt
,

is solvable by quadratures provided

α = β2(2a − 3)

4(a − 1)
.
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Proof. For LI3,3, make the change u = e−ẋ/2. The transformed equation reads

du =
(
β2

8
− α

2

)
u3 dt − β2

2
u2 dB. (43)

Using theorem 7, we find, after simple calculations that

I =
(
α

β2
+
β2

2
− 1

4

)
u I ′ = α

β2
+
β2

2
− 1

4

J = −β2u J ′ = −β2 �= 0.

So (43) is reducible provided I ′ = 0, i.e

α = β2

4
− β4

2
.

In order to integrate (43), we follow the remark made below theorem 7 and we perform the
change of variable

v = − 2

β2

∫ u

s−2 ds = 2

β2u
.

Then (43) becomes (use Ito’s formula)

dv = 2

β2

(
β2

2
+
α

β2
− 1

4

)
1

v
dt + dB.

But the term within the parentheses vanishes. Thus

v = B + C1

where C1 is an arbitrary constant stochastic process. Recalling that

u = e−ẋ/2 = β2

2(B + C1)

we finally obtain

x(t) = 2
∫ t

ln

[
2

β2
(B(s) + C1)

]
ds + C2

where C2 is another arbitrary constant stochastic process. Hence (43) is integrable by
quadratures.

In the case of LI,a3,6 make the transformation u = ẋ. The resulting equation is

du = αua−2
a−1 dt + βu

a−3/2
a−1 dB. (44)

Let

m = − 1

2(a − 1)
.

Then

I =
[
α

β
− β

2
(m + 1)

]
um I ′ = m

[
α

β
− β

2
(m + 1)

]
um−1

J = 2mβum J ′ = 2m2βum−1.

So equation (44) is reducible provided I ′ = 0 (note that J ′ cannot be zero since m �= 0), i.e

α = β2(2a − 3)

4(a − 1)
.
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In order to integrate (44) in this case, we make the change

v = − 1

βm
u−m.

Then, equation (44) reduces to

dv = −(βm)−1

(
α

β
− β

2
(m + 1)

)
v−1 dt + dB.

But the term within the parentheses vanishes. Hence

v = B + C1

where C1 is an arbitrary constant stochastic process. Reverting to the original variables, we
obtain

u = ẋ = (−βm)−1/m(B + C1)
−1/m

and finally,

x(t) =
(

β

2(a − 1)

)2(a−1) ∫ t

(B(s) + C1)
2(a−1) ds + C2

where C2 is another arbitrary constant stochastic process. This concludes the proof of the
theorem. �

Remark. We could not integrate the canonical forms corresponding to the Lie algebras Lb3,7,
LI3,8, LII3,8, LIII3,8 , although the corresponding deterministic ODEs are integrable.

5. Symmetry breaking for scalar second-order SODEs

Since the stochastic part imposes extra constraints in the determining equations (see section 3),
it is obvious that second-order scalar SODEs are less symmetric than their deterministic
counterpart. Hence, a scalar second-order SODE cannot admit an n-dimensional Lie algebra
with n � 9.

Theorem 9. A scalar second-order SODE which admits a four-dimensional point symmetry
Lie algebra is reducible to

ẍ = β dB

dt
(45)

where β �= 0 is a constant.

Proof. Use the fact that a real four-dimensional Lie algebra contains a three-dimensional
subalgebra [25, 26] and table 2. �

Example. Consider the SODE

ÿ = (ẏ − 1)2

2(y − t) + 2
√
y − t dB

dt
. (46)

Using the algorithm of section 3.3 we find that its symmetries are given by

Y1 = ∂

∂t
+
∂

∂y
Y2 = √

y − t ∂
∂y

Y3 = t ∂
∂y

Y4 = t ∂
∂t

+ 3(y − t) ∂
∂y
.
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It can be verified thatY1, Y2, Y3 andY4 generate a four-dimensional Lie algebra. So according to
theorem 9, equation (46) is reducible to (45) for some β. Indeed the transformation y = x2 + t
reduces (46) to

ẍ = dB

dt
.

Remark. If a second-order scalar SODE admits a four-dimensional Lie point symmetry
algebra, the transformation that maps it to (45) is just the transformation that maps its
symmetries to those of (45), namely, (39). To find this transformation, one needs to solve
a simple system of linear first-order partial DEs.

Next, we recall a theorem which will be crucial for the symmetry breaking of scalar
second-order SODEs.

Theorem 10 (Ergorov–Turkowski). A real Lie algebra L with 5 � dimL � 8 contains a
four-dimensional subalgebra.

Proof. See Turkowski [27]. �

By theorems 9 and 10 we deduce the following result.

Theorem 11 (Maximal Lie algebras). A scalar second-order SODE can maximally admit a
zero-, one-, two-, three- or four-dimensional point symmetry Lie algebra.

6. Conclusion

In this paper, we have obtained a symmetry algorithm for SODEs. This has been applied
to the study of scalar second-order SODEs. We found that a scalar SODE admitting a two-
dimensional point symmetry Lie algebra with connected generators is linearizable via an
invertible point transformation. We also proved that a scalar second-order SODE admitting
a two-dimensional point symmetry Lie algebra is in general reducible to a homogeneous Ito
equation. Furthermore, we classified scalar second-order SODEs admitting three-dimensional
point symmetry Lie algebras and characterized two classes of integrable nonlinear second-
order SODEs. Finally, we showed that a scalar second-order SODE can admit at most a
four-dimensional point symmetry Lie algebra.

Recently, Gaeta [28] considered projectable equivalence transformations of the Ito
equation (he named them ‘W-symmetries’). Stricto sensus, these are not symmetries of the
Ito equation (i.e. transformations that leave the Ito equation unchanged) but they are rather
transformations that map an Ito process into another one. The approach used in this paper can
be utilized to deal with non-projectable equivalence transformations of (1) and thus we can
obtain an extension of the results of [28]. But this falls out of the scope of this paper, whose
main focus is on Lie point symmetries.

Acknowledgments

The authors thank the anonymous referees for their criticism and comments that led to an
improved presentation of the work. The work of CWS was partially supported by the URC
grant RE APPM WAFO EXPEN (University of the Witwatersrand, Johannesburg).



Symmetry and integration of SODEs 191

Appendix

Here, we give the expanded forms of the equations (21), (22) and (32), (33).
If we expand (21), (22), we obtain

ηi,t + ηi,j fj − fi(ξ,t + ξ,jfj )− ξfi,t − ηjfi,j + 1
2GjlGkl(ηi,jk − fiξ,jk) = 0 (A1)

ξGij,t + ηkGij,k + (ξ,kfi − ηi,k)Gkj +
1

2
Gij

[
ξ,t + ξ,kfk +

1

2
ξ,klGkpGlp + ξ,kGkl

dBl
dt

]
= 0.

(A2)

After expansion, (32), (33) yields

(η[n] − ξ,tf − η[α] gradαf )|x(n)=f − δ1n−1GG
T grad ξ = 0 (A3)

ξG,t + η[α] gradαG +

(
n− 1

2

)
dξ

dt
G− (grad η)G + (Gẋ)T grad ξ = 0 (A4)

where the η[k] are given by the prolongation formulae (see section 3.1) and

η[α] gradαψ ≡
α=n−1∑
α=0

η
[α]
i ψ,x(α)i

(A5)

for a given ψ(t, x, ẋ, . . . , x(n−1)).
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